Affiliation:
1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
2. University of Chinese Academy of Sciences, Beijing, China
Abstract
Accurate measurement of disturbance forces is an essential prerequisite for the simulation and analysis of micro-vibrations of space optical devices. Most of the current force measurement methods are based on force sensors, which have problems such as serious coupling between sensors, and the measurement accuracy is easily affected by the preload force. In order to solve these problems, a six-dimensional disturbance force measurement method based on acceleration sensors is proposed in this paper. First, the basic structure of the force measurement platform is introduced, and then the dynamics model of the platform is established and its force measurement principle is analyzed. Then the simulation analysis of the measurement accuracy of the platform is carried out by the Monte Carlo method. The analysis results show that the measurement accuracy of the disturbance force is proportional to the measurement accuracy of the acceleration sensor and the mass matrix recognition accuracy. When the errors of the acceleration sensor and mass matrix are within the normal range, the measurement error of the force measurement platform is less than 15%. Finally, a single-degree-of-freedom disturbance force measurement verification platform is built, and the test results show that the disturbance force is basically proportional to the acceleration of the platform when it is far from the resonance frequency, which verifies the correctness of the method to a certain extent. The measurement method is simple in structure and easy to implement, and can perform real-time measurement. Moreover, the measurement frequency is wide and the resolution is high, which is suitable for the measurement of disturbance force in the form of sinusoidal vibration or multi-frequency line spectrum.
Funder
Jilin Province Science and Technology Development Plan Project
National Natural Science Foundation of China