MEMS reconfigurable millimeter-wave surface for V-band rectangular-waveguide switch

Author:

Baghchehsaraei Zargham,Shah Umer,Åberg Jan,Stemme Göran,Oberhammer Joachim

Abstract

This paper presents for the first time a novel concept of a microelectromechanical systems (MEMS) waveguide switch based on a reconfigurable surface, whose working principle is to block the wave propagation by short-circuiting the electrical field lines of the TE10 mode of a WR-12 rectangular waveguide. The reconfigurable surface is only 30 µm thick and consists of up to 1260 micromachined cantilevers and 660 contact points in the waveguide cross-section, which are moved simultaneously by integrated MEMS comb-drive actuators. Measurements of fabricated prototypes show that the devices are blocking wave propagation in the OFF-state with over 30 dB isolation for all designs, and allow for transmission of less than 0.65 dB insertion loss for the best design in the ON-state for 60–70 GHz. Furthermore, the paper investigates the integration of such microchips into WR-12 waveguides, which is facilitated by tailor-made waveguide flanges and compliant, conductive-polymer interposer sheets. It is demonstrated by reference measurements where the measured insertion loss of the switches is mainly attributed to the chip-to-waveguide assembly. For the first prototypes of this novel MEMS microwave device concept, the comb-drive actuators did not function properly due to poor fabrication yield. Therefore, for measuring the OFF-state, the devices were fixated mechanically.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A 220–260-GHz Silicon-Micromachined Waveguide MEMS Crossover Switch;IEEE Transactions on Microwave Theory and Techniques;2024-09

2. A High-Performance 220–290 GHz Micromachined Waveguide Switch Based on Interference Between MEMS Reconfigurable Surfaces;IEEE Transactions on Terahertz Science and Technology;2024-03

3. 500-750 GHz Contactless Rotating MEMS Single-Pole Double-Throw Waveguide Switch;Journal of Microelectromechanical Systems;2024

4. A Mems Contactless Rotating Terahertz Waveguide Switch;2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS);2022-01-09

5. Future Scope of RF MEMS in THz Regime;Lecture Notes in Electrical Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3