MM-wave performance and avalanche noise estimation of hexagonal SiC and GaN IMPATTs for D-band applications

Author:

Tripathy Pravash R.,Mukherjee Moumita,Pati Shankar P.

Abstract

The mm-wave as well as avalanche noise properties of IMPATT diode at D-band are efficiently estimated, with different poly-types of silicon carbide (SiC) and GaN as base materials, using advanced computer simulation techniques developed by the authors. The breakdown voltage of 4H-SiC (180 V) is more than the same for 6H-SiC, ZB- and Wz-GaN-based diode of 170,158, and 160 V, respectively. Similarly, the efficiency (14.7%) is also high in the case of 4H-SiC as compared with 6H-SiC and GaN-based diode. The study indicates that 4H-SiC IMPATT diode is capable of generating high RF power of about 8.38 W as compared with GaN IMPATT diode due to high breakdown voltage and negative resistance for the same frequency of operation. It is also observed that Wz-GaN exhibits better noise behavior 7.4 × 10−16 V2 s than SiC (5.16 × 10−15 V2 s) for IMPATT operation at 140 GHz. A comparison between the power output and noise from both the device reveals that Wz-GaN would be a suitable base material for high-power application of IMPATT diode with moderate noise.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

Reference36 articles.

1. Experimental determination of a SiC IMPATT oscillator;Yuan;IEEE Electron Device Lett.,2001

2. Crystal damage assessment of Be+-implanted GaN by UV Raman scattering

3. Simulation experiment on optical modulation of 4H-SiC millimeter-wave high power IMPATT oscillator;Mukherjee;J. Eur. Microw. Assoc. (EuMA Publishing – UK),2008

4. Growth of high quality GaN epilayers with SixNy inserting layer on Si (111) substrate;Lee;J. Korean Phys. Soc.,2004

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3