System design and calibration of SITARA—a global 21 cm short spacing interferometer prototype

Author:

Thekkeppattu Jishnu N.ORCID,McKinley BenjaminORCID,Trott Cathryn M.ORCID,Jones JakeORCID,Ung Daniel C. X.ORCID

Abstract

Abstract Global 21-cm experiments require exquisitely precise calibration of the measurement systems in order to separate the weak 21-cm signal from Galactic and extragalactic foregrounds as well as instrumental systematics. Hitherto, experiments aiming to make this measurement have concentrated on measuring this signal using the single element approach. However, an alternative approach based on interferometers with short baselines is expected to alleviate some of the difficulties associated with a single element approach such as precision modelling of the receiver noise spectrum. Short spacing Interferometer Telescope probing cosmic dAwn and epoch of ReionisAtion (SITARA) is a short spacing interferometer deployed at the Murchison Radio-astronomy Observatory (MRO). It is intended to be a prototype or a test-bed to gain a better understanding of interferometry at short baselines, and develop tools to perform observations and data calibration. In this paper, we provide a description of the SITARA system and its deployment at the MRO, and discuss strategies developed to calibrate SITARA. We touch upon certain systematics seen in SITARA data and their modelling. We find that SITARA has sensitivity to all sky signals as well as non-negligible noise coupling between the antennas. It is seen that the coupled receiver noise has a spectral shape that broadly matches the theoretical calculations reported in prior works. We also find that when appropriately modified antenna radiation patterns taking into account the effects of mutual coupling are used, the measured data are well modelled by the standard visibility equation.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference69 articles.

1. Mertens, F. G. , et al. 2020, MNRAS, 493, 1662

2. Varshalovich, D. A. , & Khersonskii, V. K. 1977, SvAL, 3, 155

3. Shaver, P. A. , Windhorst, R. A. , Madau, P. , & de Bruyn, A. G. 1999, A&A, 345, 380

4. Sokolowski, M. , et al. 2015, PASA, 32, 4

5. On the excitation mechanism of the 21-cm (radio-frequency) interstellar hydrogen emission line.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3