Abstract
Abstract
The report of a detection of an absorption profile centred at 78 MHz in the continuum radio background spectrum by the EDGES experiment and its interpretation as the redshifted 21 cm signal of cosmological origin has become one of the most debated results of observational cosmology in recent times. The cosmological 21 cm has long been proposed to be a powerful probe for observing the early Universe and tracing its evolution over cosmic time. Even though the science case is well established, measurement challenges posed on the technical ground are not fully understood to the level of claiming a successful detection. EDGES’s detection has naturally motivated a number of experimental attempts worldwide to corroborate the findings. In this paper, we present a precision cross-correlation spectrometer HYPEREION purpose-designed for a precision radio background measurement between 50–120 MHz to detect the absorption profile reported by the EDGES experiment. HYPEREION implements a pre-correlation signal processing technique that self-calibrates any spurious additive contamination from within the system and delivers a differential measurement of the sky spectrum and a reference thermal load internal to the system. This ensures an unambiguous ‘zero-point’ of absolute calibration of the purported absorption profile. We present the system design, measurement equations of the ideal system, systematic effects in the real system, and finally, an assessment of the real system output for the detection of the absorption profile at 78 MHz in the continuum radio background spectrum.
Publisher
Cambridge University Press (CUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Measuring receiver noise parameters for global 21-cm experiments;2023 XXXVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS);2023-08-19