Abstract
We derive an alternative formulation of the turbulent kinetic energy equation for flows with strong near-wall density and viscosity gradients. The derivation is based on a scaling transformation of the Navier–Stokes equations using semi-local quantities. A budget analysis of the semi-locally scaled turbulent kinetic energy equation shows that, for several variable property low-Mach-number channel flows, the ‘leading-order effect’ of variable density and viscosity on turbulence in wall bounded flows can effectively be characterized by the semi-local Reynolds number. Moreover, if a turbulence model is solved in its semi-locally scaled form, we show that an excellent agreement with direct numerical simulations is obtained for both low- and high-Mach-number flows, where conventional modelling approaches fail.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献