Effect of base topography on dynamics and transition in a dense granular flow

Author:

Bharathraj S.,Kumaran V.ORCID

Abstract

The effect of base roughness on the transition and dynamics of a dense granular flow down an inclined plane is examined using particle based simulations. Different types of base topographies, rough bases made of frozen particles in either random or hexagonally ordered configurations, as well as sinusoidal bases with height modulation in both the flow and the spanwise directions, are examined. The roughness (characteristic length of the base features scaled by the flowing particle diameter) is defined as the ratio of the base amplitude and particle diameter for sinusoidal bases, and the ratio of frozen and moving particle diameters for frozen-particle bases. There is a discontinuous transition from an ordered to a disordered flow at a critical base roughness for all base topographies studied here, indicating that it is a universal phenomenon independent of base topography. The transition roughness does depend on the base configuration and the height of the flow, but is independent of the contact model and is less than 1.5 times the flowing particle diameter for all of the bases considered here. The bulk rheology is independent of the base topography, and follows the Bagnold law for both the ordered and the disordered flows. The base topography does have a dramatic effect on the flow dynamics at the base. For flows over frozen-particle bases, there is ordering down to the base for ordered flows, and the granular temperature is comparable to that in the bulk. There is virtually no velocity slip at the base, and the mean angular velocity is equal to one-half of the vorticity down to the base. For flows over sinusoidal bases, there is significant slip at the base, and the mean angular velocity is approximately an order of magnitude higher than that in the bulk within a region of height approximately one particle diameter at the base. This large particle spin results in a disordered and highly energetic layer of approximately 5–10 particle diameters at the base, where the granular temperature is an order of magnitude higher than that in the bulk. Thus, this study reveals the paradoxical result that gentler base topographies result in large slip and large agitation at the base, whereas rougher topographies such as frozen-particle bases result in virtually no slip and no agitation at the base for both ordered and disordered flows.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3