Spiralling liquid jets: verifiable mathematical framework, trajectories and peristaltic waves

Author:

Shikhmurzaev Yulii D.ORCID,Sisoev Grigori M.

Abstract

The dynamics of a jet of an inviscid incompressible liquid spiralling out under the action of centrifugal forces is considered with both gravity and the surface tension taken into account. This problem is of direct relevance to a number of industrial applications, ranging from the spinning disc atomization process to nanofibre formation. The mathematical description of the flow by necessity requires the use of a local curvilinear non-orthogonal coordinate system centred around the jet’s baseline, and we present the general formulation of the problem without assuming that the jet is slender. To circumvent the inconvenience inherent in the non-orthogonality of the local coordinate system, the orthonormal Frenet basis is used in parallel with the local non-orthogonal basis, and the equation of motion, with the velocity considered with respect to the local coordinate system, is projected onto the Frenet basis. The variation of the latter along the baseline is then described by the Frenet equations which naturally brings the baseline’s curvature and torsion into the equations of motion. This technique allows one to handle different line-based non-orthogonal curvilinear coordinate systems in a straightforward and mathematically transparent way. An analysis of the slender-jet approximation that follows the general formulation shows how a set of ordinary differential equations describing the jet’s trajectory can be derived in two cases: $\mathit{We}=O(1)$ and $\unicode[STIX]{x1D716}\mathit{We}=O(1)$ as $\unicode[STIX]{x1D716}\rightarrow 0$, where $\unicode[STIX]{x1D716}$ is the ratio of characteristic length scales across and along the jet and $\mathit{We}$ is the Weber number. A one-dimensional model for the propagation of nonlinear peristaltic disturbances along the jet is derived in each of these cases. A critical review of the work published on this topic is presented showing where errors typically occur and how to identify and avoid them.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3