Asymptotic Representation of Vorticity and Dissipation Energy in the Flux Problem for the Navier–Stokes Equations in Curved Pipes

Author:

Chupakhin Alexander12,Mamontov Alexander23ORCID,Vasyutkin Sergey2

Affiliation:

1. Department of Mathematics and Mechanics, Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia

2. Lavrentyev Institute of Hydrodynamics SB RAS, Lavrentyev Pr. 15, Novosibirsk 630090, Russia

3. Basic Studies Department, Siberian State University of Telecommunications and Information Science, Kirova Str. 86, Novosibirsk 630102, Russia

Abstract

This study explores the problem of describing viscous fluid motion for Navier–Stokes equations in curved channels, which is important in applications like hemodynamics and pipeline transport. Channel curvature leads to vortex flows and closed vortex zones. Asymptotic models of the flux problem are useful for describing viscous fluid motion in long pipes, thus considering geometric parameters like pipe diameter and characteristic length. This study provides a representation for the vorticity vector and energy dissipation in the flow problem for a curved channel, thereby determining the magnitude of vorticity and energy dissipation depending on the channel’s central line curvature and torsion. The accuracy of the asymptotic formulas are estimated in terms of small parameter powers. Numerical calculations for helical tubes demonstrate the effectiveness of the asymptotic formulas.

Funder

Ministry of Education of the Russian Federation

Russian Science Foundation

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference21 articles.

1. Analytical Vortex Solutions to the Navier-Stokes Equation;Tryggeson;J. Math. Phys.,2008

2. Reducing the data: Analysis of the role of vascular geometry on blood flow patterns in curved vessels;Alastruey;Phys. Fluids,2012

3. Mechanics-driven mechanobiological mechanisms of arterial tortuosity;Weiss;Sci. Adv.,2020

4. Vassilevski, Y., Olshanskii, M., Simakov, S., Kolobov, A., and Danilov, A. (2020). Personalized Computational Hemodynamics: Models, Methods, and Applications for Vascular Surgery and Antitumor Therapy, Elsevier Science.

5. Pressure-driven flows in helical pipes: Bounds on flow rate and friction factor;Kumar;J. Fluid Mech.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3