Experiments on localized secondary instability in bypass boundary layer transition

Author:

Balamurugan G.,Mandal A. C.ORCID

Abstract

An experimental study on localized secondary instability of unsteady streamwise streaks in bypass boundary layer transition under an elevated level of free-stream turbulence has been carried out mainly using the particle image velocimetry (PIV) technique. Simultaneous orthogonal dual-plane PIV measurements were performed for a concurrent examination of the transitional flow features in both wall-normal and spanwise planes. These quantitative and simultaneous visualizations clearly show the wall-normal view of a low-speed streak undergoing sinuous/varicose motion in the spanwise plane. An oscillating shear layer in the wall-normal plane is found to be associated with the sinuous/varicose streak oscillation in the spanwise plane. Further, these measurements indicate that a localized secondary instability wavepacket can originate near the boundary layer edge. The time-resolved PIV measurements in the wall-normal plane clearly show how an instability develops on a lifted-up inclined shear layer and leads to flow breakdown. The estimated wavelength and convection velocity of such instabilities are found to compare well with those calculated from the one-dimensional linear stability analysis of the spatially averaged velocity profiles associated with the lifted-up shear layers. The time-resolved PIV measurements in the spanwise plane also facilitate quantitative visualizations of sinuous and varicose instabilities. These measurements experimentally confirm that a varicose instability at the juncture of an incoming high-speed streak and a downstream low-speed streak can eventually lead to the formation of lambda structures. The estimated convection velocity, wavelength and growth rate of these instabilities are found to be consistent with the numerical results reported in the literature. Moreover, the streak secondary instability is found to be apparent in the velocity contours, while the estimated streak amplitude is approximately 30 % of the free-stream velocity.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3