Abstract
A theoretical and numerical study of yield-stress fluid creeping flow about a particle is presented. Yield-stress fluids can hold rigid particles statically buoyant if the yield stress is large enough. In addressing sedimentation of rigid particles in viscoplastic fluids, we should know this critical ‘yield number’ beyond which there is no motion. As we get close to this limit, the role of viscosity becomes negligible in comparison to the plastic contribution in the leading order, since we are approaching the zero-shear-rate limit. Admissible stress fields in this limit can be found by using the characteristics of the governing equations of perfect plasticity (i.e. the sliplines). This approach yields a lower bound of the critical plastic drag force or equivalently the critical yield number. Admissible velocity fields also can be postulated to calculate the upper bound. This analysis methodology is examined for three families of particle shapes (ellipse, rectangle and diamond) over a wide range of aspect ratios. Numerical experiments of either resistance or mobility problems in a viscoplastic fluid validate the predictions of slipline theory and reveal interesting aspects of the flow in the yield limit (e.g. viscoplastic boundary layers). We also investigate in detail the cases of high and low aspect ratio of the particles.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献