History effects and near equilibrium in adverse-pressure-gradient turbulent boundary layers

Author:

Bobke A.,Vinuesa R.ORCID,Örlü R.ORCID,Schlatter P.ORCID

Abstract

Turbulent boundary layers under adverse pressure gradients are studied using well-resolved large-eddy simulations (LES) with the goal of assessing the influence of the streamwise pressure-gradient development. Near-equilibrium boundary layers were characterized through the Clauser pressure-gradient parameter $\unicode[STIX]{x1D6FD}$. In order to fulfil the near-equilibrium conditions, the free stream velocity was prescribed such that it followed a power-law distribution. The turbulence statistics pertaining to cases with a constant value of $\unicode[STIX]{x1D6FD}$ (extending up to approximately 40 boundary-layer thicknesses) were compared with cases with non-constant $\unicode[STIX]{x1D6FD}$ distributions at matched values of $\unicode[STIX]{x1D6FD}$ and friction Reynolds number $Re_{\unicode[STIX]{x1D70F}}$. An additional case at matched Reynolds number based on displacement thickness $Re_{\unicode[STIX]{x1D6FF}^{\ast }}$ was also considered. It was noticed that non-constant $\unicode[STIX]{x1D6FD}$ cases appear to approach the conditions of equivalent constant $\unicode[STIX]{x1D6FD}$ cases after long streamwise distances (approximately 7 boundary-layer thicknesses). The relevance of the constant $\unicode[STIX]{x1D6FD}$ cases lies in the fact that they define a ‘canonical’ state of the boundary layer, uniquely characterized by $\unicode[STIX]{x1D6FD}$ and $Re$. The investigations on the flat plate were extended to the flow around a wing section overlapping in terms of $\unicode[STIX]{x1D6FD}$ and $Re$. Comparisons with the flat-plate cases at matched values of $\unicode[STIX]{x1D6FD}$ and $Re$ revealed that the different development history of the turbulent boundary layer on the wing section leads to a less pronounced wake in the mean velocity as well as a weaker second peak in the Reynolds stresses. This is due to the weaker accumulated effect of the $\unicode[STIX]{x1D6FD}$ history. Furthermore, a scaling law suggested by Kitsios et al. (Intl J. Heat Fluid Flow, vol. 61, 2016, pp. 129–136), proposing the edge velocity and the displacement thickness as scaling parameters, was tested on two constant-pressure-gradient parameter cases. The mean velocity and Reynolds-stress profiles were found to be dependent on the downstream development. The present work is the first step towards assessing history effects in adverse-pressure-gradient turbulent boundary layers and highlights the fact that the values of the Clauser pressure-gradient parameter and the Reynolds number are not sufficient to characterize the state of the boundary layer.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3