Abstract
For Mach reflection in steady supersonic flow, the slipline and reflected shock wave from the triple point are disturbed by secondary Mach waves generated over the slipline and by the expansion fan from the rear wedge corner. Analytical expressions for the shape of the curved slipline and reflected shock wave are derived in this paper. It is found that, due to transmitted expansion waves from the expansion fan, the slipline has a slope discontinuity at the turning point, i.e., the intersection point of the slipline and the leading characteristics of the transmitted expansion wave. The hypothetical shock wave calculated by considering this slope discontinuity as flow deflection angle matches a similar wave observed in numerical results by computational fluid dynamics, suggesting the existence of a weak shock wave from this turning point. The effects of the secondary Mach waves upstream of the turning point and of the turning point weak shock wave mutually cancel out approximately so that the transmitted Mach waves can be approximated as straight characteristic lines. This simplification leads to a fast analytical model which can predict the Mach stem height and shape of the slipline and reflected shock wave with increasing accuracy for the decreasing deflection angle of the slipline at the triple point. The slipline slope discontinuity at the turning point and the hypothetical turning point weak shock wave are new phenomena found in this work.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献