Affiliation:
1. Department of Space Engineering and Rocketry , BIT Mesra , Ranchi , 835215 , India
Abstract
Abstract
Experiments have been carried out to investigate the over expanded free jet at Mach number 2.0 without and with tabs of different cross-sectional shapes, tab length penetration into the jet core defined as blockage ratio, and symmetrical and asymmetrical placement of tabs at the jet exit. The cross-sectional shapes such as triangular, square, and circular have been studied with the penetration depth of 3 %, 7 %, and 11 % blockage. The Pitot tube and Schlieren flow visualization were carried out in experiments. The basic features of the jet with Mach disk, shock cell, and its distortion with the adoption of tabs at various nozzle pressure ratios indicate a definite influence that helps in the reduction of the core jet length. This characteristic is also influenced by changes in tab cross-section and length of penetration. Since the basic jet has three-dimensional structures, the asymmetric placement of tabs is beneficial compared to the symmetric orientation of tabs. The jet width increases with adoption of these tabs and different shapes. Whereas, a maximum core jet length reduction of the order of 60 % could be achieved using the present techniques.