Asymptotic stability and transient growth in pulsatile Poiseuille flow through a compliant channel

Author:

Tsigklifis KonstantinosORCID,Lucey Anthony D.

Abstract

The time-asymptotic linear stability of pulsatile flow in a channel with compliant walls is studied together with the evaluation of modal transient growth within the pulsation period of the basic flow as well as non-modal transient growth. Both one (vertical-displacement) and two (vertical and axial) degrees-of-freedom compliant-wall models are implemented. Two approaches are developed to study the dynamics of the coupled fluid–structure system, the first being a Floquet analysis in which disturbances are decomposed into a product of exponential growth and a sum of harmonics, while the second is a time-stepping technique for the evolution of the fundamental solution (monodromy) matrix. A parametric study of stability in the non-dimensional parameter space, principally defined by Reynolds number ($Re$), Womersley number ($Wo$) and amplitude of the applied pressure modulation ($\unicode[STIX]{x1D6EC}$), is then conducted for compliant walls of fixed geometric and material properties. The flow through a rigid channel is shown to be destabilized by pulsation for low $Wo$, stabilized due to Stokes-layer effects at intermediate $Wo$, while the critical $Re$ approaches the steady Poiseuille-flow result at high $Wo$, and that these effects are made more pronounced by increasing $\unicode[STIX]{x1D6EC}$. Wall flexibility is shown to be stabilizing throughout the $Wo$ range but, for the relatively stiff wall used, is more effective at high $Wo$. Axial displacements are shown to have negligible effect on the results based upon only vertical deformation of the compliant wall. The effect of structural damping in the compliant-wall dynamics is destabilizing, thereby suggesting that the dominant inflectional (Rayleigh) instability is of the Class A (negative-energy) type. It is shown that very high levels of modal transient growth can occur at low $Wo$, and this mechanism could therefore be more important than asymptotic amplification in causing transition to turbulent flow for two-dimensional disturbances. Wall flexibility is shown to ameliorate mildly this phenomenon. As $Wo$ is increased, modal transient growth becomes progressively less important and the non-modal mechanism can cause similar levels of transient growth. We also show that oblique waves having non-zero transverse wavenumbers are stable to higher values of critical $Re$ than their two-dimensional counterparts. Finally, we identify an additional instability branch at high $Re$ that corresponds to wall-based travelling-wave flutter. We show that this is stabilized by the inclusion of structural damping, thereby confirming that it is of the Class B (positive-energy) instability type.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3