The stability of rotating-disc boundary-layer flow over a compliant wall. Part 1. Type I and II instabilities

Author:

COOPER A. J.,CARPENTER PETER W.

Abstract

A theoretical study into the effects of wall compliance on the stability of the rotating-disc boundary layer is described. A single-layer viscoelastic wall model is coupled to a sixth-order system of fluid stability equations which take into account the effects of viscosity, Coriolis acceleration, and streamline curvature. The coupled system of equations is integrated numerically by a spectral Chebyshev-tau technique.Travelling and stationary modes are studied and wall compliance is found to greatly increase the complexity of the eigenmode spectrum. It is effective in stabilizing the inviscid Type I (or cross-flow) instability. The effect on the viscous (Type II) eigenmode is more complex and can be strongly destabilizing. An analysis of the energy flux indicates that this destabilization arises as a result of a large degree of energy production by viscous stresses at the wall/flow interface.The Type I and II instabilities are shown to be negative and positive energy waves respectively. The co-existence of eigenmodes of opposite energy type indicates the possibility of modal interaction and coalescence. It is found that, compared with the rigid disc, wall compliance promotes the interaction and coalescence of the Type I and II eigenmodes. There is an associated strong instability which appears to be characterized by marked horizontal motion of the compliant surface. Modal coalescence is interpreted physically as producing local algebraic growth which could advance the onset of nonlinear effects.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3