Abstract
Granular flows such as landslides, debris flows and avalanches are systems of particles with a large range of particle sizes that typically segregate while flowing. The physical mechanisms responsible for this process, however, are still poorly understood, and there is no predictive framework for ascertaining the segregation behaviour of a given system of particles. Here, we provide experimental evidence of individual large intruder particles being attracted to a fixed point in a dry two-dimensional flow of particles of otherwise uniform size. A continuum theory is proposed which captures this effect using only a single fitting parameter that describes the rate of segregation, given knowledge of the bulk flow field. Predictions of the continuum theory are compared with the experimental findings, both for the typical location and velocity field of a range of intruder sizes. For large intruder particle sizes, the continuum model successfully predicts that a fixed point attractor will form, where intruders are drawn to a single location.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献