Heterarchical modelling of comminution for rotary mills: part II—particle crushing with segregation and mixing

Author:

Bisht Mukesh Singh,Guillard François,Shelley Paul,Marks Benjy,Einav Itai

Abstract

Abstract In granular media, the crushing of individual particles is influenced by the number of contacts with neighbouring particles. This well-known phenomenon of “cushioning” shields the individual particles from crushing when the number of contacts is high. However, in open systems that involve extensive granular flow and bulk motion, like those found in industrial mills, the neighbouring particles continually exchange positions due to segregation and mixing, thereby altering the number of neighbouring contacts and their sizes, affecting the crushing of individual particles. Therefore, a critical challenge for properly modelling comminution in such systems lies in tracking the fluxes of the various particle size classes. Here, we explore the physics that governs the mechanisms of segregation and mixing within the multiscale heterarchical modelling paradigm. Building upon the framework developed in Part I, which integrated the heterarchical aspects of the physics of crushing along streamlines, we further account for segregation and mixing, and demonstrate their impact on the comminution efficiency of autogenous grinding mills. In particular, segregation is shown to greatly enhance the extent of particle crushing within the mill. Accordingly, we posit that this mechanism cannot be ignored. In summary, the new model sheds light on previously obscured dynamics within industrial mills, as well as enables the field to predict the time evolution of the particle size distribution at any point in the mill domain. This modelling capability opens the doors to new developments for estimating and improving milling efficiencies. Graphical Abstract

Funder

University of Sydney

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3