Diffusion and mixing effects in hot jet initiation and propagation of hydrogen detonations

Author:

Cai XiaodongORCID,Deiterding Ralf,Liang Jianhan,Sun Mingbo,Mahmoudi Yasser

Abstract

In the present work, the role of diffusion and mixing in hot jet initiation and detonation propagation in a supersonic combustible hydrogen–oxygen mixture is investigated in a two-dimensional channel. A second-order accurate finite volume method solver combined with an adaptive mesh refinement method is deployed for both the reactive Euler and Navier–Stokes equations in combination with a one-step and two-species reaction model. The results show that the small-scale vortices resulting from the Kelvin–Helmholtz instability enhance the reactant consumption in the inviscid result through the mixing. However, the suppression of the growth of the Kelvin–Helmholtz instability and the subsequent formation of small-scale vortices imposed by the diffusion in the viscous case can result in the reduction of the mixing rate, hence slowing the consumption of the reactant. After full initiation in the whole channel, the mixing becomes insufficient to facilitate the reactant consumption. This applies to both the inviscid and viscous cases and is due to the absence of the unburned reactant far away from the detonation front. Nonetheless, the stronger diffusion effect in the Navier–Stokes results can contribute more significantly to the reactant consumption closely behind the detonation front. However, further downstream the mixing is expected to be stronger, which eventually results in a stronger viscous detonation than the corresponding inviscid one. At high grid resolutions it is vital to correctly consider physical viscosity to suppress intrinsic instabilities in the detonation front, which can also result in the generation of less triple points even with a larger overdrive degree. Numerical viscosity was minimized to such an extent that inviscid results remained intrinsically unstable while asymptotically converged results were only obtained when the Navier–Stokes model was applied, indicating that solving the reactive Navier–Stokes equations is expected to give more correct descriptions of detonations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3