The effect of diffusion on the dynamics of unsteady detonations

Author:

Romick C. M.,Aslam T. D.,Powers J. M.

Abstract

AbstractThe dynamics of a one-dimensional detonation predicted by a one-step irreversible Arrhenius kinetic model are investigated in the presence of mass, momentum and energy diffusion. A study is performed in which the activation energy is varied and the length scales of diffusion and reaction are held constant. As the activation energy is increased, the system goes through a series of period-doubling events and eventually undergoes a transition to chaos. The rate at which these bifurcation points converge is calculated and shown to be in agreement with the Feigenbaum constant. Within the chaotic regime, there exist regions in which there are limit cycles consisting of a small number of oscillatory modes. When an appropriately fine grid is used to capture mass, momentum and energy diffusion, predictions are independent of the differencing scheme. Diffusion affects the behaviour of the system by delaying the onset of instability and strongly influencing the dynamics in the unstable regime. The use of the reactive Euler equations to predict detonation dynamics in the unstable and marginally stable regimes is called into question as the selected reactive and diffusive length scales are representative of real physical systems; reactive Navier–Stokes is a more appropriate model in such regimes.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of unsteady supersonic flow on detonation under different hot jet initiation conditions;International Journal of Hydrogen Energy;2024-01

2. A hybrid lattice Boltzmann method for gaseous detonations;Journal of Computational Physics;2023-12

3. Lagrangian dispersion and averaging behind a two-dimensional gaseous detonation front;Journal of Fluid Mechanics;2023-08-08

4. Large deformation GNARLYX hydrocode simulations of the drop weight impact experiment;SHOCK COMPRESSION OF CONDENSED MATTER - 2022: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter;2023

5. A three-dimensional discrete Boltzmann model for steady and unsteady detonation;Journal of Computational Physics;2022-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3