The kinematic genesis of vortex formation due to finite rotation of a plate in still fluid

Author:

David M. Jimreeves,Mathur ManikandanORCID,Govardhan R. N.ORCID,Arakeri J. H.

Abstract

We present a combined experimental and numerical study of an idealized model of the propulsive stroke of the turning manoeuvre in fish. Specifically, we use the framework of Lagrangian coherent structures (LCSs) to describe the kinematics of the flow that results from a thin plate performing a large angle rotation about its tip in still fluid. Temporally and spatially well-resolved velocity fields are obtained using a two-dimensional, incompressible finite-volume solver, and are validated by comparisons with experimentally measured velocity fields and alternate numerical simulations. We then implement the recently proposed variational theory of LCSs to extract the hyperbolic and elliptic LCSs in the numerically generated velocity fields. Detailed LCS analysis is performed for a plate motion profile described by $\dot{\unicode[STIX]{x1D703}}(t)=\unicode[STIX]{x1D6FA}_{max}\sin ^{2}(\unicode[STIX]{x1D714}t)$ during $0\leqslant t\leqslant t_{o}$ and zero otherwise. The stopping time $t_{o}$ is given by $t_{o}=\unicode[STIX]{x03C0}/\unicode[STIX]{x1D714}=10~\text{s}$, the value of $\unicode[STIX]{x1D6FA}_{max}$ chosen to give a stopping angle of $\unicode[STIX]{x1D703}_{max}=90^{\circ }$, resulting in a Reynolds number $Re=c^{2}\unicode[STIX]{x1D6FA}_{max}/\unicode[STIX]{x1D708}=785.4$, where $c$ is the plate chord length and $\unicode[STIX]{x1D708}=10^{-6}~\text{m}^{2}~\text{s}^{-1}$ the kinematic viscosity of water. The flow comprises a starting and a stopping vortex, resulting in a pair of oppositely signed vortices of unequal strengths that move away from the plate in a direction closely aligned with the final plate orientation at $t/t_{o}\approx 2$. The hyperbolic LCSs are shown to encompass the fluid material that is advected away from the plate for $t>t_{o}$, henceforth referred to as the advected bulk. The starting and stopping vortices, identified using elliptic LCSs and hence more objective than Eulerian vortex detection methods, constitute only around two thirds of the advected bulk area. The advected bulk is traced back to $t=0$ to identify five distinct lobes of fluid that eventually form the advected bulk, and hence map the long-term fate of various regions in the fluid at $t=0$. The five different lobes of fluid are then shown to be delineated by repelling LCS boundaries at $t=0$. The linear momentum of the advected bulk region is shown to account for approximately half of the total impulse experienced by the plate in the direction of its final orientation, thus establishing its dynamical significance. We provide direct experimental evidence for the kinematic relevance of hyperbolic and elliptic LCSs using novel dye visualization experiments, and also show that attracting hyperbolic LCSs provide objective characterization of the spiral structures often observed in vortical flows. We conclude by showing that qualitatively similar LCSs persist for several other plate motion profiles and stopping angles as well.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3