A self-propelling clapping body

Author:

Mahulkar Suyog V.ORCID,Arakeri Jaywant H.ORCID

Abstract

We report an experimental study of the motion of a clapping body consisting of two flat plates pivoted at the leading edge by a torsion spring. Clapping motion and forward propulsion of the body are initiated by the sudden release of the plates, initially held apart at an angle $2\theta _o$ . Results are presented for the clapping and forward motions, and for the wake flow field for 24 cases, where depth-to-length ratio ( $d^* = 1.5,1\text { and }0.5$ ), spring stiffness per unit depth ( $Kt$ ), body mass ( $m_b$ ) and initial separation angle ( $2\theta _o = 45^{\circ }\text { and }60^{\circ }$ ) are varied. The body initially accelerates rapidly forward, then slowly retards to nearly zero velocity. Whereas the acceleration phase involves a complex interaction between plate and fluid motions, the retardation phase is simply fluid dynamic drag slowing the body. The wake consists of either a single axis-switching elliptical vortex loop (for $d^* = 1\text { and }1.5$ ) or multiple vortex loops (for $d^* = 0.5$ ). The body motion is nearly independent of $d^*$ and most affected by variation in $\theta _o$ and $Kt$ . Using conservation of linear momentum and conversion of spring strain energy into kinetic energy in the fluid and body, we obtain a relation for the translation velocity of the body in terms of the various parameters. Approximately 80 % of the initial stored energy is transferred to the fluid, only 20 % to the body. The experimentally obtained cost of transport lies between 2 and $8\ \mathrm {J}\ \mathrm {kg}^{-1}\ \mathrm {m}^{-1}$ .

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3