Abstract
Here, we report the measurements of two-dimensional (2-D) spectra of the streamwise velocity ($u$) in a high-Reynolds-number turbulent boundary layer. A novel experiment employing multiple hot-wire probes was carried out at friction Reynolds numbers ranging from 2400 to 26 000. Taylor’s frozen turbulence hypothesis is used to convert temporal-spanwise information into a 2-D spatial spectrum which shows the contribution of streamwise ($\unicode[STIX]{x1D706}_{x}$) and spanwise ($\unicode[STIX]{x1D706}_{y}$) length scales to the streamwise variance at a given wall height ($z$). At low Reynolds numbers, the shape of the 2-D spectra at a constant energy level shows$\unicode[STIX]{x1D706}_{y}/z\sim (\unicode[STIX]{x1D706}_{x}/z)^{1/2}$behaviour at larger scales, which is in agreement with the existing literature at a matched Reynolds number obtained from direct numerical simulations. However, at high Reynolds numbers, it is observed that the square-root relationship tends towards a linear relationship ($\unicode[STIX]{x1D706}_{y}\sim \unicode[STIX]{x1D706}_{x}$), as required for self-similarity and predicted by the attached eddy hypothesis.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献