Vorticity cascade and turbulent drag in wall-bounded flows: plane Poiseuille flow

Author:

Kumar SamvitORCID,Meneveau CharlesORCID,Eyink GregoryORCID

Abstract

Drag for wall-bounded flows is directly related to the spatial flux of spanwise vorticity outward from the wall. In turbulent flows a key contribution to this wall-normal flux arises from nonlinear advection and stretching of vorticity, interpretable as a cascade. We study this process using numerical simulation data of turbulent channel flow at friction Reynolds number $Re_\tau =1000$ . The net transfer from the wall of spanwise vorticity created by downstream pressure drop is due to two large opposing fluxes, one which is ‘down-gradient’ or outward from the wall, where most vorticity concentrates, and the other which is ‘up-gradient’ or toward the wall and acting against strong viscous diffusion in the near-wall region. We present evidence that the up-gradient/down-gradient transport occurs by a mechanism of correlated inflow/outflow and spanwise vortex stretching/contraction that was proposed by Lighthill. This mechanism is essentially Lagrangian, but we explicate its relation to the Eulerian anti-symmetric vorticity flux tensor. As evidence for the mechanism, we study (i) statistical correlations of the wall-normal velocity and of wall-normal flux of spanwise vorticity, (ii) vorticity flux cospectra identifying eddies involved in nonlinear vorticity transport in the two opposing directions and (iii) visualizations of coherent vortex structures which contribute to the transport. The ‘D-type’ vortices contributing to down-gradient transport in the log layer are found to be attached, hairpin-type vortices. However, the ‘U-type’ vortices contributing to up-gradient transport are detached, wall-parallel, pancake-shaped vortices with strong spanwise vorticity, as expected by Lighthill's mechanism. We discuss modifications to the attached eddy model and implications for turbulent drag reduction.

Funder

Simons Foundation

National Science Foundation

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3