Tomographic PIV investigation on 3D wake structures for flow over a wall-mounted short cylinder

Author:

Zhu Hang-Yu,Wang Cheng-Yue,Wang Hong-Ping,Wang Jin-JunORCID

Abstract

Tomographic particle image velocimetry (TPIV) measurement with six high-resolution charge-coupled device (CCD) cameras is conducted to investigate flow structures over a finite circular cylinder with an aspect ratio of 2 ($h/d=2$). This short wall-mounted cylinder is fully immersed in a thick turbulent boundary layer ($\unicode[STIX]{x1D6FF}/h=1.025$). Focus is placed on the three-dimensional instantaneous vortex structures and their dynamic characteristics in the wake flow fields. Based on the present results, a refined topological model of the mean wake field behind the finite circular cylinder is proposed, where the spatial locations of the typical vortex structures and their interactions are described in more detail. Among the reported typical vortex structures (i.e. the horseshoe, tip, base, trailing and arch vortex), emphasis is laid on discussion of the tip and arch vortex. The instantaneous 3D M-shape arch vortex and an alternating large-scale streamwise vortex are first found in the present experiment, and their developments are also discussed. Therefore, it is suggested that the instantaneous finite-cylinder wake is dominated by the arch vortex system and the large-scale streamwise vortices. Moreover, in the instantaneous volumetric flow fields, both the antisymmetric and the symmetric wake behaviours are observed. With proper orthogonal decomposition (POD) analysis, the dynamic characteristics of the wake field are clarified. Different from the flow around an infinite cylinder without control, the third and fourth POD modes are characterized by low-frequency symmetric shedding. The low-frequency feature shown in the second mode pair is observed and associated with the occurrence of instantaneous symmetric 3D wake behaviour triggered by the low-aspect-ratio effect and the extension of the separated shear layer. The low frequency seems be attributed to the flapping phenomenon, i.e. oscillation of the recirculation in the backward-facing step flow. It is found that the flapping motion has a modulating effect on the occurrence of the antisymmetric shedding vortex and thus the large-scale streamwise vortex.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3