Team learning from human demonstration with coordination confidence

Author:

Banerjee Bikramjit,Vittanala Syamala,Taylor Matthew Edmund

Abstract

Abstract Among an array of techniques proposed to speed-up reinforcement learning (RL), learning from human demonstration has a proven record of success. A related technique, called Human-Agent Transfer, and its confidence-based derivatives have been successfully applied to single-agent RL. This article investigates their application to collaborative multi-agent RL problems. We show that a first-cut extension may leave room for improvement in some domains, and propose a new algorithm called coordination confidence (CC). CC analyzes the difference in perspectives between a human demonstrator (global view) and the learning agents (local view) and informs the agents’ action choices when the difference is critical and simply following the human demonstration can lead to miscoordination. We conduct experiments in three domains to investigate the performance of CC in comparison with relevant baselines.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Software

Reference16 articles.

1. Improving Reinforcement Learning with Confidence-Based Demonstrations

2. Song, J. , Ren, H. , Sadigh, D. & Ermon, S. 2018. Multi-Agent Generative Adversarial Imitation Learning. In Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018).

3. da Silva, F. L. , Glatt, R. & Costa, A. H. R. 2017. Simultaneously learning and advising in multiagent reinforcement learning. In Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems (AAMAS-17).

4. Interactive Reinforcement Learning with Dynamic Reuse of Prior Knowledge from Human and Agent Demonstrations

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model-free reinforcement learning from expert demonstrations: a survey;Artificial Intelligence Review;2021-10-18

2. Special issue on adaptive and learning agents 2018;The Knowledge Engineering Review;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3