Improving Reinforcement Learning with Confidence-Based Demonstrations

Author:

Wang Zhaodong1,Taylor Matthew E.1

Affiliation:

1. Washington State University

Abstract

Reinforcement learning has had many successes, but in practice it often requires significant amounts of data to learn high-performing policies. One common way to improve learning is to allow a trained (source) agent to assist a new (target) agent. The goals in this setting are to 1) improve the target agent's performance, relative to learning unaided, and 2) allow the target agent to outperform the source agent. Our approach leverages source agent demonstrations, removing any requirements on the source agent's learning algorithm or representation. The target agent then estimates the source agent's policy and improves upon it. The key contribution of this work is to show that leveraging the target agent's uncertainty in the source agent's policy can significantly improve learning in two complex simulated domains, Keepaway and Mario.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Safe Exploration in Reinforcement Learning for Learning from Human Experts;2023 IEEE International Conference on Artificial Intelligence, Blockchain, and Internet of Things (AIBThings);2023-09-16

2. Reinforcement learning from expert demonstrations with application to redundant robot control;Engineering Applications of Artificial Intelligence;2023-03

3. Learning by reusing previous advice: a memory-based teacher–student framework;Autonomous Agents and Multi-Agent Systems;2022-12-29

4. Redundant robot control with learning from expert demonstrations;2022 IEEE Symposium Series on Computational Intelligence (SSCI);2022-12-04

5. Learning from Unreliable Human Action Advice in Interactive Reinforcement Learning;2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids);2022-11-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3