Abstract
AbstractThere are many approaches for solving planning problems. Many of these approaches are based on ‘brute force’ search methods and they usually do not care about structures of plans previously computed in particular planning domains. By analyzing these structures, we can obtain useful knowledge that can help us find solutions to more complex planning problems. The method described in this paper is designed for gathering macro-operators by analyzing training plans. This sort of analysis is based on the investigation of action dependencies in training plans. Knowledge gained by our method can be passed directly to planning algorithms to improve their efficiency.
Publisher
Cambridge University Press (CUP)
Subject
Artificial Intelligence,Software
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献