Two-level Q-learning: learning from conflict demonstrations

Author:

Li MaoORCID,Wei Yi,Kudenko Daniel

Abstract

Abstract One way to address this low sample efficiency of reinforcement learning (RL) is to employ human expert demonstrations to speed up the RL process (RL from demonstration or RLfD). The research so far has focused on demonstrations from a single expert. However, little attention has been given to the case where demonstrations are collected from multiple experts, whose expertise may vary on different aspects of the task. In such scenarios, it is likely that the demonstrations will contain conflicting advice in many parts of the state space. We propose a two-level Q-learning algorithm, in which the RL agent not only learns the policy of deciding on the optimal action but also learns to select the most trustworthy expert according to the current state. Thus, our approach removes the traditional assumption that demonstrations come from one single source and are mostly conflict-free. We evaluate our technique on three different domains and the results show that the state-of-the-art RLfD baseline fails to converge or performs similarly to conventional Q-learning. In contrast, the performance level of our novel algorithm increases with more experts being involved in the learning process and the proposed approach has the capability to handle demonstration conflicts well.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Software

Reference16 articles.

1. Q-learning

2. Improving Reinforcement Learning with Confidence-Based Demonstrations

3. Taylor, M. E. , Suay, H. B. & Chernova, S. 2011. Integrating reinforcement learning with human demonstrations of varying ability. In The 10th International Conference on Autonomous Agents and Multiagent Systems-Volume 2, 617–624. International Foundation for Autonomous Agents and Multiagent Systems.

4. Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition

5. Brockman, G. , Cheung, V. , Pettersson, L. , Schneider, J. , Schulman, J. , Tang, J. & Zaremba, W. 2016. Openai gym. arXiv preprint arXiv:1606.01540.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3