Believing the axioms. I

Author:

Maddy Penelope

Abstract

§0. Introduction. Ask a beginning philosophy of mathematics student why we believe the theorems of mathematics and you are likely to hear, “because we have proofs!” The more sophisticated might add that those proofs are based on true axioms, and that our rules of inference preserve truth. The next question, naturally, is why we believe the axioms, and here the response will usually be that they are “obvious”, or “self-evident”, that to deny them is “to contradict oneself” or “to commit a crime against the intellect”. Again, the more sophisticated might prefer to say that the axioms are “laws of logic” or “implicit definitions” or “conceptual truths” or some such thing.Unfortunately, heartwarming answers along these lines are no longer tenable (if they ever were). On the one hand, assumptions once thought to be self-evident have turned out to be debatable, like the law of the excluded middle, or outright false, like the idea that every property determines a set. Conversely, the axiomatization of set theory has led to the consideration of axiom candidates that no one finds obvious, not even their staunchest supporters. In such cases, we find the methodology has more in common with the natural scientist's hypotheses formation and testing than the caricature of the mathematician writing down a few obvious truths and preceeding to draw logical consequences.The central problem in the philosophy of natural science is when and why the sorts of facts scientists cite as evidence really are evidence. The same is true in the case of mathematics. Historically, philosophers have given considerable attention to the question of when and why various forms of logical inference are truth-preserving. The companion question of when and why the assumption of various axioms is justified has received less attention, perhaps because versions of the “self-evidence” view live on, and perhaps because of a complacent if-thenism.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference74 articles.

1. The evolution of large cardinal axioms in set theory

2. Kurt Godel;Kreisel;Biographical memoirs of fellows of the Royal Society,1980

3. Martin D. A. [PSCN] Projective sets and cardinal numbers, circulated photocopy.

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. References;Graphs, Orders, Infinites and Philosophy;2023-03-31

2. Epistemic phase transitions in mathematical proofs;Cognition;2022-08

3. The passage from natural language to mathematics, the hardship of the mathematical definition;SN Social Sciences;2022-07

4. The Price of Mathematical Scepticism;Philosophia Mathematica;2022-06-30

5. Mathematics and Metaphilosophy;2022-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3