Vertical take-off and landing hybrid unmanned aerial vehicles: An overview

Author:

Rehan M.ORCID,Akram F.,Shahzad A.,Shams T.A.,Ali Q.

Abstract

AbstractThis article presents the research status and development trends of Vertical Take-off and Landing hybrid Unmanned Aerial Vehicles. In this research, a special emphasis is laid on the design philosophies, analysis techniques, dynamic modeling, and control laws of hybrid VTOL UAVs. It studies and compares various design configurations of hybrid VTOL UAVs, based on key design features such as aerodynamic performance, flight stability, structural strength, propulsive power, avionics systems, flight controls, autonomy, ease of fabrication and flight transition mechanisms. The benefits and shortcomings of each design configuration are expressed in detail. A selection problem is formulated in a fuzzy environment and the Multi-Attribute Decision-Making technique is employed. Ongoing research projects in the field are discussed and a novel design of tail sitter hybrid VTOL UAV is presented by the authors. This work serves as a useful guide for the prospective explorers of this challenging field of research.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference113 articles.

1. [70] (2021, 15 January). Thirty two hour flight record for Aerovel Flexrotor VTOL. Available: https://www.suasnews.com/2017/10/thirty-two-hour-flight-record-aerovel-flexrotor-vtol/

2. Flight Testing of the T-Wing Tail-Sitter Unmanned Air Vehicle

3. [40] (2021, 08 January). DHL Parcelcopter 3.0 - Autonomous flight in the Alps. Available: https://www.dpdhl.com/en/media-relations/media-center/tv-footage/dhl-parcelcopter-v3-flight-full-hd.html

4. [10] (2020, 31 December). Introducing FireFLY6 PRO welcome to the revolution. Available: https://www.birdseyeview.aero/pages/firefly6-pro

5. [35] Dickeson, J.J. , Mix, D.R. , Koenig, J.S. , Linda, K.M. , Cifdaloz, O. , Wells, V.L. , and Rodriguez, A.A. H∞ hover-to-cruise conversion for a tilt-wing rotorcraft, Proceedings of the 44th IEEE Conference on Decision and Control, 2005, pp 6486–6491.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3