Abstract
In the Cayley-Klein projective metric it is ordinarily assumed that the measure of angles, plane and dihedral, is always elliptic, i.e. in a sheaf of planes or lines there is no actual plane or line which makes an infinite angle with the others. With this restriction there are only three kinds of geometry—Parabolic, Hyperbolic and Elliptic, i.e. the geometries of Euclid, Lobachevskij and Riemann ; and the form of the absolute is also limited. Thus in plane geometry the only degenerate form of the absolute which is possible is two coincident straight lines and a pair of imaginary points ; in three dimensions the absolute cannot be a ruled quadric, other than two coincident planes. If, however, this restriction as to angular measurement is removed, there are 9 systems of plane geometry and 27 in three dimensions; for the measure of distance, plane angle and dihedral angle may be parabolic, hyperbolic, or elliptic.
Publisher
Cambridge University Press (CUP)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献