Author:
Zayas-Cabán Gabriel,Jasin Stefanus,Wang Guihua
Abstract
AbstractWe propose an asymptotically optimal heuristic, which we term randomized assignment control (RAC) for a restless multi-armed bandit problem with discrete-time and finite states. It is constructed using a linear programming relaxation of the original stochastic control formulation. In contrast to most of the existing literature, we consider a finite-horizon problem with multiple actions and time-dependent (i.e. nonstationary) upper bound on the number of bandits that can be activated at each time period; indeed, our analysis can also be applied in the setting with nonstationary transition matrix and nonstationary cost function. The asymptotic setting is obtained by letting the number of bandits and other related parameters grow to infinity. Our main contribution is that the asymptotic optimality of RAC in this general setting does not require indexability properties or the usual stability conditions of the underlying Markov chain (e.g. unichain) or fluid approximation (e.g. global stable attractor). Moreover, our multi-action setting is not restricted to the usual dominant action concept. Finally, we show that RAC is also asymptotically optimal for a dynamic population, where bandits can randomly arrive and depart the system.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献