Linear Program-Based Policies for Restless Bandits: Necessary and Sufficient Conditions for (Exponentially Fast) Asymptotic Optimality

Author:

Gast Nicolas1,Gaujal Bruno1,Yan Chen23ORCID

Affiliation:

1. University of Grenoble Alpes, Institut national de recherche en informatique et en automatique, Centre national de la recherche scientifique, Grenoble Institut national polytechnique, Laboratoire d’informatique de Grenoble, 38000 Grenoble, France;

2. STATIFY, Institut national de recherche en informatique et en automatique, 38334 Saint Ismier, France;

3. Biostatistics and Spatial Processes, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, 84914 Avignon, France

Abstract

We provide a framework to analyze control policies for the restless Markovian bandit model under both finite and infinite time horizons. We show that when the population of arms goes to infinity, the value of the optimal control policy converges to the solution of a linear program (LP). We provide necessary and sufficient conditions for a generic control policy to be (i) asymptotically optimal, (ii) asymptotically optimal with square root convergence rate, and (iii) asymptotically optimal with exponential rate. We then construct the LP-index policy that is asymptotically optimal with square root convergence rate on all models and with exponential rate if the model is nondegenerate in finite horizon and satisfies a uniform global attractor property in infinite horizon. We next define the LP-update policy, which is essentially a repeated LP-index policy that solves a new LP at each decision epoch. We conclude by providing numerical experiments to compare the efficiency of different LP-based policies. Funding: This work was supported by Agence Nationale de la Recherche [Grant ANR-19-CE23-0015].

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Timely Communications for Remote Inference;IEEE/ACM Transactions on Networking;2024

2. Exponential asymptotic optimality of Whittle index policy;Queueing Systems;2023-05-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3