Author:
Asadi Majid,Ebrahimi Nader,Soofi Ehsan S.
Abstract
Abstract
The proportional hazards (PH) model and its associated distributions provide suitable media for exploring connections between the Gini coefficient, Fisher information, and Shannon entropy. The connecting threads are Bayes risks of the mean excess of a random variable with the PH distribution and Bayes risks of the Fisher information of the equilibrium distribution of the PH model. Under various priors, these Bayes risks are generalized entropy functionals of the survival functions of the baseline and PH models and the expected asymptotic age of the renewal process with the PH renewal time distribution. Bounds for a Bayes risk of the mean excess and the Gini's coefficient are given. The Shannon entropy integral of the equilibrium distribution of the PH model is represented in derivative forms. Several examples illustrate implementation of the results and provide insights for potential applications.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献