Author:
Shrahili Mansour,Kayid Mohamed
Abstract
<abstract><p>In this study, we focused on investigating the properties of residual Tsallis entropy for order statistics. The reliability of engineering systems is highly influenced by order statistics, for example, when modeling the lifetime of a series system and the lifetime of a parallel system. The residual Tsallis entropy of the ith order statistic from a continuous distribution function and its deviation from the residual Tsallis entropy of the ith order statistics from a uniform distribution were investigated. In the mathematical framework, a method was provided to represent the residual Tsallis entropy of the ith order statistic in the continuous case with respect to the case where the distribution was uniform. This approach can provide insight into the behavior and properties of the residual Tsallis entropy for order statistics. We also investigated the monotonicity of the new uncertainty measure under different conditions. An investigation of these properties leads to a deeper understanding of the relationship between the position of the order statistics and the resulting Tsallis entropy. Finally, we presented the computational results and proposed estimators for estimating the residual Tsallis entropy of an exponential distribution. For this purpose, we derived a maximum likelihood estimator.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference31 articles.
1. M. Abbasnejad, N. R. Arghami, Renyi entropy properties of order statistics, Commun. Stat.-Theory M., 40 (2010), 40–52. https://doi.org/10.1080/03610920903353683
2. S. Abe, Axioms and uniqueness theorem for Tsallis entropy, Phys. Lett. A, 271 (2000), 74–79. https://doi.org/10.1016/S0375-9601(00)00337-6
3. G. Alomani, M. Kayid, Further properties of Tsallis entropy and its application, Entropy, 25 (2023), 199. https://doi.org/10.3390/e25020199
4. B. C. Arnold, N. Balakrishnan, H. N. Nagaraja, A first course in order statistics, SIAM, 2008. https://doi.org/10.1137/1.9780898719062
5. M. Asadi, N. Ebrahimi, E. S. Soofi, Dynamic generalized information measures, Stat. Probab. Lett., 71 (2005), 85–98. https://doi.org/10.1016/j.spl.2004.10.033
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献