Author:
Landriault David,Li Bin,Zhang Hongzhong
Abstract
AbstractDrawdown (respectively, drawup) of a stochastic process, also referred as the reflected process at its supremum (respectively, infimum), has wide applications in many areas including financial risk management, actuarial mathematics, and statistics. In this paper, for general time-homogeneous Markov processes, we study the joint law of the first passage time of the drawdown (respectively, drawup) process, its overshoot, and the maximum of the underlying process at this first passage time. By using short-time pathwise analysis, under some mild regularity conditions, the joint law of the three drawdown quantities is shown to be the unique solution to an integral equation which is expressed in terms of fundamental two-sided exit quantities of the underlying process. Explicit forms for this joint law are found when the Markov process has only one-sided jumps or is a Lévy process (possibly with two-sided jumps). The proposed methodology provides a unified approach to study various drawdown quantities for the general class of time-homogeneous Markov processes.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献