Effective suppression of mode distortion induced by stimulated Raman scattering in high-power fiber amplifiers

Author:

Gao Wei,Fan Wenhui,Ju Pei,Li Gang,Zhang Yanpeng,He Aifeng,Gao Qi,Li Zhe

Abstract

Abstract Mode distortion induced by stimulated Raman scattering (SRS) has become a new obstacle for the further development of high-power fiber lasers with high beam quality. Here, an approach for effective suppression of the SRS-induced mode distortion in high-power fiber amplifiers has been demonstrated experimentally by adjusting the seed power (output power of seed source) and forward feedback coefficient of the rear port in the seed source. It is shown that the threshold power of the SRS-induced mode distortion can be increased significantly by reducing the seed power or the forward feedback coefficient. Moreover, it has also been found that the threshold power is extremely sensitive to the forward feedback power value from the rear port. The influence of the seed power on the threshold power can be attributed to the fact that the seed power plays an important role in the effective length of the gain fiber in the amplifier. The influence of the forward feedback coefficient on the threshold power can be attributed to the enhanced SRS configuration because the end surface of the rear port together with the fiber in the amplifier constitutes a half-opening cavity. This suppression approach will be very helpful to further develop the high-power fiber amplifiers with high beam quality.

Publisher

Cambridge University Press (CUP)

Subject

Nuclear Energy and Engineering,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3