Refinement of AlphaFold2 models against experimental and hybrid cryo-EM density maps

Author:

Alshammari MaythaORCID,Wriggers WillyORCID,Sun Jiangwen,He Jing

Abstract

Abstract Recent breakthroughs in deep learning-based protein structure prediction show that it is possible to obtain highly accurate models for a wide range of difficult protein targets for which only the amino acid sequence is known. The availability of accurately predicted models from sequences can potentially revolutionise many modelling approaches in structural biology, including the interpretation of cryo-EM density maps. Although atomic structures can be readily solved from cryo-EM maps of better than 4 Å resolution, it is still challenging to determine accurate models from lower-resolution density maps. Here, we report on the benefits of models predicted by AlphaFold2 (the best-performing structure prediction method at CASP14) on cryo-EM refinement using the Phenix refinement suite for AlphaFold2 models. To study the robustness of model refinement at a lower resolution of interest, we introduced hybrid maps (i.e. experimental cryo-EM maps) filtered to lower resolutions by real-space convolution. The AlphaFold2 models were refined to attain good accuracies above 0.8 TM scores for 9 of the 13 cryo-EM maps. TM scores improved for AlphaFold2 models refined against all 13 cryo-EM maps of better than 4.5 Å resolution, 8 hybrid maps of 6 Å resolution, and 3 hybrid maps of 8 Å resolution. The results show that it is possible (at least with the Phenix protocol) to extend the refinement success below 4.5 Å resolution. We even found isolated cases in which resolution lowering was slightly beneficial for refinement, suggesting that high-resolution cryo-EM maps might sometimes trap AlphaFold2 models in local optima.

Publisher

Cambridge University Press (CUP)

Subject

Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Appraisal of AlphaFold2-Predicted Models in Cryo-EM Map Interpretation;Microscopy and Microanalysis;2023-07-22

2. Refinement of AlphaFold2 Models against Experimental Cryo-EM Density Maps at 4-6Å Resolution;2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2022-12-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3