Effects of sample preparation on nitrogen degradability of pangola grass (Digitaria decumbens) and tropical tree legumes

Author:

Aumont G.,Saminadin G.,Cerneau P.,Xandé A.

Abstract

SummaryThe effects of particle size on the nitrogen degradability of four tropical forages were studied in 1991 in Guadeloupe. Samples of pangola grass (Digitaria decumbens) 22 and 47 days old, Gliricidia sepium and Leucaena leucocephala were prepared as follows: grasses were (1) freshly cut with scissors to 0·5–1·0 cm in length and frozen at – 18 °C; or for later study were dried at 80 °C and ground to pass a (2) 0·5 mm, (3) 10 mm or (4) 20 mm screen. Nitrogen degradability (ND) was determined by placing samples in nylon bags with two different pore sizes (25 and 46 μm) which were then put into the rumen of cows for 2, 4, 8, 16, 24 and 48 h. The kinetics of nitrogen degradation were examined using Ørskov's model. Particle losses through the nylon bags, dry matter (DM) and nitrogen solubility of the samples were also measured in vitro. The sample preparation and the type of forage were the main sources of variation in the rapidly degradable nitrogen fraction, the slowly degradable nitrogen fraction, the degradation rate, the potentially degradable nitrogen fraction and ND. Nitrogen degradability was 55·8,46·7, 640 and 46·5% for pangola grass (at 22 and 47 days regrowth), Gliricidia and Leucaena samples, respectively. Mean ND was 47·9, 59·4, 56·1 and 49·6% for freshly cut and 0·5, 1·0 and 2·0 mm dried ground samples, respectively. Sample preparation had little effect on nitrogen solubility. For samples dried and ground at 0·5 and 1·0 mm, particle losses were 18·8 and 15·0% of DM, respectively. The insoluble but degradable fraction was 60·8, 51·9, 42·5 and 42·7% for freshly cut and 0·5, 1·0 and 2·0 mm dried ground samples, respectively. The freshly cut material appeared to be suitable for the estimation of ND in tropical forages.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3