WAASB index revealed stable resistance sources for soybean anthracnose in India

Author:

Rajput L. S.,Nataraj V.ORCID,Kumar S.,Amrate P. K.,Jahagirdar S.,Huilgol S. N.,Chakruno P.,Singh A.,Maranna S.,Ratnaparkhe M. B.,Borah M.,Singh K. P.,Gupta S.,Khandekar N.

Abstract

AbstractAnthracnose caused by Colletotrichum truncatum is a major soybean disease in India. Genetic resistance is the viable option to combat yield losses due to this disease. In the current study, 19 soybean genotypes were evaluated for anthracnose disease resistance at five locations (Medziphema, Palampur, Dharwad, Jabalpur and Indore) for three consecutive years (2017–2019) to identify stable and superior genotypes as resistant sources and to elucidate genotype (G) × environment (E) interactions. Genotype effect, environment effect and G × E interactions were found significant (P < 0.001) where G × E interactions contributed highest (42.44) to the total variation followed by environment (29.71) and genotype (18.84). Through Weighted Average of Absolute Scores (WAASB) stability analysis, PS 1611 (WAASB score = 0.33) was found to be most stable and through WAASBY superiority analysis NRC 128 (WAASBY score = 94.31) and PS 1611 (WAASBY score = 89.43) were found to be superior for mean performance and stability. These two genotypes could be candidate parents for breeding for durable and stable anthracnose resistance. Through principal component analysis, disease score was found to be positively associated with relative humidity, wind speed at 2 m above ground level, effect of temperature on radiation use efficiency and global solar radiation based on latitude and Julian day. Among the five locations, Indore was found to be highly discriminative with the highest mean disease incidence and could differentiate anthracnose-resistant and susceptible genotypes effectively, therefore can be considered an ideal location for breeding for field resistance against anthracnose disease.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3