Abstract
Multi-location experiments on maize were conducted from 2016 to 2019 at ten locations distributed across two agro-climatic zones (ACZ) i.e., ACZ-3 and ACZ-8 of Karnataka, India. Individual analysis of variance for each location-year combination showed significant differences among the hybrids; similarly, combined analysis showed a higher proportion of GE interaction variance than due to genotype. Mega-environments were identified using biplot approaches such as AMMI, GGE, and WAASB methodologies for the years 2016 to 2019. The BLUP method revealed a high correlation between grain yield and stability indices ranging from 0.67 to 1.0. Considering all three methods together, the three location pairs Arabhavi-Belavatagi, Bailhongal-Belavatagi, and Hagari-Sirguppa had three occurrences in the same mega-environment with a value of 0.67, and these location combinations consistently produced winning genotypes. Among the common winning genotypes identified, it was G7 during 2016 and 2017 and G10 during 2018 and 2019, based on WAASBY. The likelihood of Arabhavi-Nippani, Hagari-Mudhol, and Dharwad-Hagari occurring in the same mega-environment is minimal because they did not share the same winning genotype, with the exception of a small number of events. Despite being in the same agro-climatic zone, Arabhavi, Hagari, and Mudhol rarely had a winning genotype in common. An agro-climatic zone is grouped based on climatic and soil conditions which doesn’t consider GE interaction of cultivars thus, releasing the cultivars for commercial cultivation considering mega environments pattern would enhance the yield for the given target region.
Publisher
Public Library of Science (PLoS)
Reference41 articles.
1. Pandey A, Semwal DP, Ahlawat SP, Sharma SK. Maize (Zea mays): Collection Status, Diversity Mapping and Gap Analysis. National Bureau of Plant Genetic Resources, New Delhi, India; 2015.
2. Refining fertilizer rate recommendation for maize production systems in Assosa, North Western Ethiopia;TA Legesse;Advance Techniques in Biology and Medicine,2018
3. Climate variation explains a third of global crop yield variability;DK Ray;Nature Communications,2015
4. Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments;BM Prasanna;Theoretical and Applied Genetics,2021
5. FAOSTAT (2021) Statistical Database. Food and Agriculture Organization of the United Nations, Rome.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献