Effect of drought on growth and water use of sugar beet

Author:

Brown Kay F.,Messem A. B.,Dunham R. J.,Biscoe P. V.

Abstract

SummaryThe growth and water use of sugar beet affected by early (ED) and late (LD) drought was compared with that of irrigated (I) and unirrigated (NI) controls. Mobile shelters were used to exclude rain from ED plots during June and July, and LD plots during August and September, respectively, whereas outside these periods the ED and LD plots were irrigated as necessary.The ED treatment affected the fibrous roots severely. Many of the roots in the top 60 cm of soil died and development of the root system below this depth was slow. Expansion of the leaf canopy slowed, radiation interception was reduced and the rate of water use fell from about 1·2 times to 0·6 times Penman potential transpiration rate. The LD treatment, which was imposed when the fibrous root system was already extensive, had little effect on the fibrous roots except in the top soil. The accessible soil water was quickly depleted and the resulting stress was accompanied by earlier senescence of leaves. The rate of converting intercepted light to crop dry matter was reduced in both treatments. However, the ED treatment was the most detrimental because the amount of light intercepted in the months of highest radiation was greatly reduced owing to the restricted leaf cover. The relative effects on growth are reflected in the final sugar yields which were 8·7, 10·5, 9·9 and 12·0 (±0·30) t/ha in the ED, LD, NI and I treatments respectively.More of the deep soil water was used in the drought-affected plots (particularly LD) than in the irrigated controls. Maximum depths of water extraction were 140–150 cm in ED and I plots and > 170 cm in LD plots. The highest uptake rates per unit length of root (20–40 μl/cm per day) were measured in the deepest part of the root system. At all depths, uptake rates declined as the soil dried. After correcting for overestimated water use where necessary, the ratios of final dry matter and sugar yields respectively to season-long water use (June–October) were close to 1·4 and 0·8 t/ha per 25 mm for all four treatments.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3