Effect of breed and pasture type on methane emissions from weaned lambs offered fresh forage

Author:

FRASER M. D.,FLEMING H. R.,THEOBALD V. J.,MOORBY J. M.

Abstract

SUMMARYTo investigate the extent to which enteric methane (CH4) emissions from growing lambs are explained by simple body weight and diet characteristics, a 2 × 2 Latin square changeover design experiment was carried out using two sheep breeds and two fresh pasture types. Weaned lambs of two contrasting breed types were used: Welsh Mountain (WM, a small, hardy hill breed) and Welsh Mule × Texel (TexX, prime lamb) (n = 8 per breed). The lambs were zero-grazed on material cut from recently reseeded perennial ryegrass and extensively managed permanent pasture. In each experimental period, individual ad libitum dry matter intake (DMI) was determined indoors following an adaptation period of 2 weeks, and CH4 emissions were measured individually in open-circuit respiration chambers over a period of 3 days. Although total daily CH4 emissions were lower for the WM lambs than for the TexX lambs (13·3 v. 15·7 g/day, respectively) when offered fresh forage, the yield of CH4 per unit DMI was similar for the two breed types (16·4 v. 17·7 g CH4/kg DMI). Total output of CH4 per day was higher when lambs were offered ryegrass compared with permanent pasture (16·1 v. 12·9 g/day, respectively), which was probably driven by differences in DMI (986 v. 732 g/day). Methane emissions per unit DMI (16·4 v. 17·7 g CH4/kg DMI) and proportion of gross energy intake excreted as CH4 (0·052 v. 0·056 MJ/MJ) were both higher on the permanent pasture. No forage × breed type interactions were identified. The results indicate that forage type had a greater impact than breed type on CH4 emissions from growing weaned lambs. It can be concluded that when calculating CH4 emissions for inventory purposes, it is more important to know what forages growing lambs are consuming than to know what breeds they are.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3