Links between functional composition, biomass production and forage quality in permanent grasslands over a broad gradient of conditions

Author:

MICHAUD A.,PLANTUREUX S.,POTTIER E.,BAUMONT R.

Abstract

SUMMARYTo upgrade the use of permanent grasslands in livestock farming systems for their economic and environmental utility, their value needs better assessment in terms of both quantity (biomass production) and quality (nutritive value: organic matter digestibility (OMD) and crude protein content (CP)). The wide variability in permanent grassland botanical composition makes it important to understand the links between vegetation characteristics and permanent grassland value, and how far environmental factors influence this value. The current work investigated how vegetation characteristics and weather explained the variability of the biomass production and nutritive value of permanent grasslands. Two models were used to determine the best vegetation characteristics for the prediction: (i) plant functional types (PFT), proportions of grasses, legumes and forbs and weather, and (ii) two proxies for PFT (dry matter content (DMC) and phenological development at medium plant stage (MPS)), proportion of grasses, legumes and forbs, and weather. The study was conducted on a set of 190 permanent grasslands distributed over a wide range of soil, climatic and management conditions, and lasted 2 years (2009/10). For each of the permanent grasslands, climatic data, values of vegetation characteristics, biomass production and nutritive value were collected at the beginning and end of spring, and during summer and autumn regrowths. Contribution of weather was important and particularly for regrowths. Composition in terms of botanical families, plant stage and sward DMC was the common variables that explained both biomass production and nutritive value during the growing season. Biomass production was mainly explained by the proportion of legumes and forbs, MPS and DMC considering both models. Grass nutritive value was linked to the same factors, including PFT. However, the contribution of grass PFTs was lower in models. Both models could be used to predict biomass production and nutritive value:R2of the two models are quite similar. Over a wide range of environmental and management conditions, vegetation characteristics and climatic data explained almost half of the variance of forage quality and 20–40% of the variance of biomass production.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3