On the problem of uncoupling systems of linear differential equations

Author:

Hill James M.,McNabb Alex

Abstract

AbstractIn modelling phenomena involving diffusion and chemical reactions, coupled systems of linear differential equations are often obtained, which can involve several dependent variables. For two dependent variables, coupled reaction-diffusion systems can be uncoupled, and in principle the original boundary value problem can be reduced to two separate boundary value problems for the classical heat equation. Here we address various aspects of the fundamental unsolved problem of the determination of corresponding uncoupling transformations for systems involving several dependent variables. We present, in an elementary manner, the current state of knowledge relating to this complex problem area. Several new results are obtained here. For example, in reviewing known results two dependent variables we observe that those systems for which uncoupling transformations have been found are essentially those which can be reduced to a coupled system involving a single spatial operator L. In addition, for several dependent variables, the general solution structure for the kernel matrix, involved in the uncoupling transformation, is presented together with some explicit results for values of components of the kernel matrix along characteristics, which are deduced from elementary considerations.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Solute transport in dual-permeability porous media;Water Resources Research;2012-04

2. Analytical solutions for triple-porosity problems;Computational Methods in Water Resources, Proceedings of the XIVth International Conference on Computational Methods in Water Resources (CMWR XIV);2002

3. On Dankwerts' transformation for two variable coupled systems;Bulletin of the Australian Mathematical Society;1990-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3