Author:
Hill James M.,McNabb Alex
Abstract
AbstractIn modelling phenomena involving diffusion and chemical reactions, coupled systems of linear differential equations are often obtained, which can involve several dependent variables. For two dependent variables, coupled reaction-diffusion systems can be uncoupled, and in principle the original boundary value problem can be reduced to two separate boundary value problems for the classical heat equation. Here we address various aspects of the fundamental unsolved problem of the determination of corresponding uncoupling transformations for systems involving several dependent variables. We present, in an elementary manner, the current state of knowledge relating to this complex problem area. Several new results are obtained here. For example, in reviewing known results two dependent variables we observe that those systems for which uncoupling transformations have been found are essentially those which can be reduced to a coupled system involving a single spatial operator L. In addition, for several dependent variables, the general solution structure for the kernel matrix, involved in the uncoupling transformation, is presented together with some explicit results for values of components of the kernel matrix along characteristics, which are deduced from elementary considerations.
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Solute transport in dual-permeability porous media;Water Resources Research;2012-04
2. Analytical solutions for triple-porosity problems;Computational Methods in Water Resources, Proceedings of the XIVth International Conference on Computational Methods in Water Resources (CMWR XIV);2002
3. On Dankwerts' transformation for two variable coupled systems;Bulletin of the Australian Mathematical Society;1990-06