Abstract
AbstractA Fredholm operator exists which maps the solutions of a system of linear partial differential equations of the form ∂u/∂t = DLu + Au coupled by a matrix A onto those solutions of a similar system coupled by a matrix B which have the same initial values. The kernels of this operator satisfy a hyperbolic system of equations. Since these equations are independent of the linear partial differential operator L, the same operator serves as a mapping for a large class of equations. If B is chosen diagonal, the solutions of a coupled system with matrix A may be obtained from the uncoupled system with matrix B.
Publisher
Cambridge University Press (CUP)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献