A functional limit theorem for general shot noise processes

Author:

Iksanov AlexanderORCID,Rashytov Bohdan

Abstract

AbstractBy a general shot noise process we mean a shot noise process in which the counting process of shots is arbitrary locally finite. Assuming that the counting process of shots satisfies a functional limit theorem in the Skorokhod space with a locally Hölder continuous Gaussian limit process, and that the response function is regularly varying at infinity, we prove that the corresponding general shot noise process satisfies a similar functional limit theorem with a different limit process and different normalization and centering functions. For instance, if the limit process for the counting process of shots is a Brownian motion, then the limit process for the general shot noise process is a Riemann–Liouville process. We specialize our result for five particular counting processes. Also, we investigate Hölder continuity of the limit processes for general shot noise processes.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Reference33 articles.

1. On finiteness and continuity of shot noise processes

2. [32] Westcott, M. (1976). On the existence of a generalized shot-noise process. In Studies in Probability and Statistics: Papers in Honour of Edwin J. G. Pitman, ed. E. J. Williams. Amsterdam: North-Holland, pp. 73–88.

3. A functional limit theorem for the profile of random recursive trees

4. Queues Driven by Hawkes Processes

5. Renewal shot noise processes in the case of slowly varying tails;Kabluchko;Theor. Stoch. Proc.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3