Use of the Rise Distance Method to Measure Beam Size of a FIB

Author:

Orloff J.,Roussel L.

Abstract

The performance metric of greatest interest to the user of a focused ion beam (FIB) system is generally its resolution. Because of the difficulty in defining and measuring the resolution of a FIB system directly, its performance is often assessed using a method related to the beam quality instead. This consists of the measurement of the rise distance of the beam current as the beam passes across an edge, which, for low currents where spherical aberration can be neglected, is closely related to the full width at half maximum (FWHM) of the current density of the ion beam. The edge, also known as the “knife edge,” corresponds to a sharp discontinuity in a specimen, as can be practically found on the surface of a graphite specimen. Because the rise distance can be used to obtain an idea of the dimension of the waist of a beam, it is, perhaps, an indication of the quality of an instrument. Because the rise distance depends on the quality of an edge, it is sometimes called edge sharpness. This concept bears similarities with the image sharpness method developed to assess the performance of SEMs, usually on gold nanoparticles on carbon specimen. Rise distance is actually a convolution of the current density distribution with the properties of the knife edge and depends strongly on the spatial distribution of the secondary electron yield of the edge. By using the rise distance, different systems can be compared in a quantitative way. To compare instruments, the identical specimen must be used and the measurements must be done in an identical way. This article discusses the method and some pitfalls in its application.

Publisher

Cambridge University Press (CUP)

Subject

General Medicine

Reference6 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3