Neuroprotective effects of the mood stabilizer lamotrigine against glutamate excitotoxicity: roles of chromatin remodelling and Bcl-2 induction

Author:

Leng Yan1,Fessler Emily Bame1,Chuang De-Maw1

Affiliation:

1. Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA

Abstract

Abstract Lamotrigine (LTG), a phenyltriazine derivative and anti-epileptic drug, has emerged as an effective first-line treatment for bipolar mood disorder. Like the other mood stabilizers lithium and valproate, LTG also has neuroprotective properties but its exact mechanisms remain poorly defined. The present study utilized rat cerebellar granule cells (CGCs) to examine the neuroprotective effects of LTG against glutamate-induced excitotoxicity and to investigate potential underlying mechanisms. CGCs pretreated with LTG were challenged with an excitotoxic dose of glutamate. Pretreatment caused a time- and concentration-dependent inhibition of glutamate excitotoxicity with nearly full protection at higher doses (⩾100 µm), as revealed by cell viability assays and morphology. LTG treatment increased levels of acetylated histone H3 and H4 as well as dose- and time-dependently enhanced B-cell lymphoma-2 (Bcl-2) mRNA and protein levels; these changes were associated with up-regulation of the histone acetylation and activity of the Bcl-2 promoter. Importantly, lentiviral-mediated Bcl-2 silencing by shRNA reduced both LTG-induced Bcl-2 mRNA up-regulation and neuroprotection against glutamate excitotoxicity. Finally, the co-presence of a sub-effective concentration of LTG (10 µm) with lithium or valproate produced synergistic neuroprotection. Together, our results demonstrate that the neuroprotective effects of LTG against glutamate excitotoxicity likely involve histone deacetylase inhibition and downstream up-regulation of anti-apoptotic protein Bcl-2. These underlying mechanisms may contribute to the clinical efficacy of LTG in treating bipolar disorder and warrant further investigation.

Publisher

Oxford University Press (OUP)

Subject

Pharmacology (medical),Psychiatry and Mental health,Pharmacology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3